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Abstract: The requirements for real-world manipulation tasks are diverse and
often conflicting; some tasks necessitate force constraints or collision avoidance,
while others demand high-frequency feedback. Satisfying these varied require-
ments with a fixed state-action representation and control strategy is challenging,
impeding the development of a universal robotic foundation model. In this work,
we propose Meta-Control, the first LLM-enabled automatic control synthesis ap-
proach that creates customized state representations and control strategies tailored
to specific tasks. Meta-Control leverages a generic hierarchical control frame-
work to address a wide range of heterogeneous tasks. Our core insight is the
decomposition of the state space into an abstract task space and a concrete track-
ing space. By harnessing LLM’s extensive common sense and control knowledge,
the LLM designs these spaces, including states, dynamic models, and controllers,
using pre-defined but abstract templates. Meta-Control stands out for its fully
model-based nature, allowing for rigorous analysis, efficient parameter tuning,
and reliable execution. It not only utilizes decades of control expertise encap-
sulated within LLMs to facilitate heterogeneous control but also ensures formal
guarantees such as safety and stability. Our method is validated both in real-world
scenarios and simulations across diverse tasks with conflicting requirements, such
as collision avoidance versus convergence and compliance versus high precision.
Videos and additional results are at meta-control-paper.github.io
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Figure 1: Open world robot tasks have inherently different and even opposite requirements that can be diffi-
cult to satisfy holistically with fixed state-action representations and fixed control strategies. To address this
problem, Meta-Control leverages hierarchical formulation and LLMs, enabling automatic control synthesis by
automatically customizing the most appropriate state action representations, dynamic models, and controllers.

meta-control-paper.github.io


1 Introduction

Recent advances in robot learning have enabled embodied agents to interact intelligently with the
environments via methods such as predefined action primitives (i.e. skills) [1, 2, 3], parameterized
policies [4, 5, 6], and reinforcement learning (RL) [7, 8, 9].

However, existing methods face a common challenge: real-world tasks exhibit inherently diverse
and often conflicting requirements that are difficult to satisfy with a fixed control strategy. For in-
stance, as illustrated in fig. 1, a pick-and-place task requires precise movements to ensure collision
avoidance, which requires safe position control. Conversely, position control is unsuitable for an
open-door task due to the difficulty of planning a trajectory that perfectly aligns with the door’s
swing path, making compliant control more favorable. Similarly, pole balancing tasks demand con-
trollers that ensure the pole’s convergence (a position-attracting goal) that opposes collision avoid-
ance (a position-avoiding goal). On the other hand, although visuomotor methods can potentially
address heterogeneous tasks, they often lack reliability and explainability. Models with predefined
action pools may cover different task types but require manual construction and have limited appli-
cability, hindering their scalability to diverse tasks. These challenges restrict existing methods from
generalizing to various open-world manipulation tasks with varying constraints.

To overcome these limitations, we propose Meta-Control, a novel method that automatically cus-
tomizes robot skills for diverse challenges of open-world tasks. Our core insight is that, although it
is difficult to overcome arbitrary challenges with a fixed combination of representation and control
strategy, each challenge can be effectively tackled with a specialized combination. If agents could
automatically select suitable representation and control strategies, they would be able to handle di-
verse open-world tasks. For example, the agent would select a compliant controller for opening a
door, and a hybrid position-force controller for board wiping tasks

Motivated by these observations, we formulate robot skill design as a control system synthesis prob-
lem and leverage LLMs to design the most appropriate representation and control strategy for a given
task. We propose a hierarchical design scheme that eases the synthesis while maintaining high gen-
eralizability. The hierarchy involves a high-level task space and a low-level tracking space. The task
space is an abstracted, intuitive space for accomplishing the task (e.g., Cartesian space or gripper
pose space) while the tracking space usually represents the robot state space where low-level con-
straints can be specified and task-level commands are followed. The LLM determines both the task
and tracking spaces, along with the corresponding dynamic models and controllers for each space.
In general, the task controller focuses on high-level objectives, while the tracking controller empha-
sizes low-level control with constraint satisfaction. This hierarchical design significantly enhances
the capability of synthesized control systems compared to motion primitive methods.

Meta-Control offers several benefits: 1. It enables the synthesis of challenging heterogeneous
robotic skills for unseen tasks, allowing each task to be accomplished with the most suitable rep-
resentation and control system tailored to task-specific requirements. 2. Unlike previous work that
primarily utilizes spatial priors from LLMs (e.g., object localization), Meta-Control leverages the
internalized control knowledge of LLMs which encompasses decades of modeling and optimization
efforts in the form of control system design. 3. The synthesized control system is fully model-based
which allows rigorous analysis, efficient parameter tuning, and formal guarantees (e.g., safety and
stability), leading to reliable and trustworthy execution compared to end-to-end methods.

2 Related work

Recent advancements in designing embodied agents for diverse tasks can be broadly classified into
four categories: skill libraries, parameterized policies, end-to-end methods, and representation learn-
ing. Meta-Control integrates aspects of these approaches. A Meta-Control synthesized control sys-
tem can be viewed as an end-to-end parameterized policy composed hierarchically of unit primitives.
The representation is chosen by LLM. The parameters are inferred by LLM from trial and error, akin
to RL with an LLM provided reward. By integrating the strengths of these approaches, Meta-Control
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sets a new standard for synthesizing robot skills, offering a flexible, robust, and explainable solution
for a wide range of real-world tasks.

Skill library allows diverse control strategies and composite execution through predefined libraries
of motion primitives with high-level APIs. These libraries can be dynamically called or combined
by the LLM to accomplish tasks [1, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19] Other works build skill
libraries through behavior cloning, reinforcement learning, or bootstrapping [5, 20, 10, 21, 22, 23,
24, 25, 26, 19, 27, 28, 29]. However, these methods require manual construction and are often
limited to specific task types (e.g., pick and place). In contrast, Meta-Control can synthesize new,
heterogeneous skills on the fly using predefined dynamic models and controller templates.

Parameterized policy differs from the skill library methods in using a fixed strategy, such as MPC
or RL with varying parameters to compose policies for different tasks. The parameters may in-
clude dynamic models [30, 31, 32, 33, 34, 35], constraints [36, 4, 37], or costs / objectives / re-
wards [38, 39, 40, 41, 7, 8]. These parameters can be inferred by LLMs [4, 41, 7, 8], or learned from
data [30, 38, 39]. Another typical case is a hierarchical policy in which the parameters are high-level
commands for an instruction following controller [42, 29]. A notable limitation is that the chosen
parameterized policy inherently constrains the method’s capability. For example, an MPC that gen-
erates end-effector actions in Cartesian space cannot produce force-compliant control in joint space.
RL-based methods that learn parameters from rewards are unsuitable for online skill synthesis. In
comparison, Meta-Control can dynamically generate parameterized policies and is highly flexible.

End-to-End models directly map perceptions to robot actions. [6, 43, 44, 45, 46, 47, 48, 49, 50, 51,
52] leverage visual language models (VLMs) to translate instructions and observations to robot arm
actions. Besides explicitly mapping observation and instruction to action, it’s also admissible to first
learn energy function [53], pixel-wise or voxel-wise affordance [54, 55, 56], and then extract actions
from that energy function or affordance map. Recent works utilize diffusion models to learn from
demonstration [57, 58, 20], enabling multimodal action distribution. End-to-end methods often out-
put Cartesian actions (position, orientation, velocity, etc.), requiring additional motion planning to
generate joint-level movement, and therefore inherently limit the capability. Furthermore, the train-
ing data domain limits the generalizability. Meta-Control overcomes these limitations by integrating
LLM with model-based control strategies, ensuring robustness and explainability.

Representation learning maps high-dimensional observations into low-dimensional representa-
tions that are more semantically meaningful and easier to control with [59, 60, 61]. It can be com-
bined with various control strategies [62]. Efforts to develop generic representations for different
tasks include task-specific representation [63, 64], visual representation [65, 61, 66, 67, 68, 69, 70,
71], and multi-modal representations [72, 73, 55, 67, 74, 75]. However, learned representations often
require fixed raw inputs (e.g., camera input) and lack explainability. In contrast, Meta-Control se-
lects a subset of available observations for representation, enhancing explainability and adaptability
to different inputs.

3 Method

In this work, we focus on synthesizing robot skills, defined as unit actions (e.g., grab the eraser, erase
the marks) from robot tasks instructed via free-form language L (e.g., clean the whiteboard) [4]. We
assume that the decomposition from task to skills: L → ℓ1, ℓ2, . . . , ℓn is given by a task-level
planner, which can be LLM-based or search-based. Our focus is to synthesize a control system to
accomplish each of the skills described by ℓi.

Control system synthesis is a fundamental aspect of control engineering that involves designing and
implementing control systems to manage the behavior of dynamic systems. The goal of control
system synthesis is to ensure that a system operates as desired, achieving specified performance
criteria such as stability, accuracy, and efficiency. The process typically involves two key steps:
system modeling and controller synthesis. Directly designing the control system for open-world
skills is very difficult because the design space is infinite. Existing work usually simplifies the
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Figure 2: Overview of Meta-Control. The skill description is given by the user. Other prompts are automat-
ically generated based on the system setup and code base. The composer generates h, f , v, u based on the
prompts, then evaluate the synthesized controllers and revise them based on execution results and optional hu-
man feedback.

process in different ways as we have discussed in section 2. We need a proper design scheme that is
easy to follow and generalize to a wide range of skills. To address these challenges, we first present
a hierarchical control formulation for skill synthesis and then introduce the three key procedures
for control system synthesis with LLM: design via templates, interface alignment, and parameter
optimization.

3.1 Generic Hierarchical Control Framework

Our key insight is that a bilevel hierarchical control framework can represent various skills. Given a
skill description ℓi, we can synthesize a high-level task controller in an intuitive abstract space and a
low-level tracking controller that tracks the high-level control in the robot state space. We formulate
the problem in three spaces: state space, measurement space, and task space.

State space: ẋ = f(x, u) Measurement space: y = g(x, u) Task space: ż = h(z, v)

where x is the system state, u is the state space control input, y is the output or measurement of the
system, z is the state of the task space, and v is the task space control input. The task space contains
intuitive and high-level states, such as the gripper poses for robot arms and the center-of-mass for
quadrupeds. y has to be measurable or extractable from perception. f, g, h are dynamic models
of the corresponding system. The task space can sometimes be omitted when it coincides with the
state space, such as when a robot arm skill directly specifies joint goals. We denote the task space
controller by πv(y), and the tracking space controller by πu(y, v). Essentially, we decompose skill
synthesis into two sub-problems:

minπ(y) J(x(t), u(t)) =⇒ minπv(y) Jz(z(t), v(t)) & minπu(y,v) Jx(x(t), u(t))
s.t. c(x) ≤ 0, s.t. cz(z) ≤ 0, s.t. cx(x) ≤ 0

The first sub-problem solves the task control input v under task-space constraint cz . The second
sub-problem tracks v by solving the state control input u under state-space constraint cx. Our goal
is to use LLM to 1) implicitly design the proper task state z; 2) explicitly design the dynamic models
h(z, v) and f(x, u); 3) implicitly design the objective Jz and Jx and the constraints cz(z) and cx(x).
4) explicitly design the task and tracking controller πv(y), πu(y, v). 5) Adjust the parameters for h,
f , πv(y), and πu(y, v) to achieve the desired performance.

3.2 Control System Synthesis by LLM

Designing z, h, f , πv , and πu directly is challenging due to the infinite possible spaces and dy-
namic models, the need for accurate and deep understanding of the robotic system and data flow,
and the dependencies between different modules. To address these challenges, we define model and
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Figure 3: Comparison of Meta-control and trajectory planning based method on real robot for wiping board
and opening door. The trajectory based method fails to erase the mark because it neglects force requirement.
Furthermore, opening a door with a trajectory-based method leads to displacement of the cabinet because the
planned trajectory does not precisely align with the door’s movement. That may damage the door if the cabinet
is fixed. In contrast, Meta-Control addressed these challenges with properly customized control systems.

controller templates to constrain the form of dynamic models and controllers. Then, an LLM syn-
thesizes the control system following three stages: design via templates, interface alignment, and
parameter optimization (see fig. 2).

Design via Templates The LLM designs the control system by selecting the appropriate models
and controllers from the template library provided in the prompt. Templates are predefined object
classes that need to be instantiated with concrete arguments. For example, we offer a dynamic model
template called LinearModel which can be instantiated by passing in four matrices A,B,C,D
describing a linear system, and a controller template LQRController requires matrices Q,R and
vectors x0, u0. The LLM chooses whether a template is for the task space or the tracking space.
Templates include functionality descriptions, argument requirements, and interface format. The
design also relies on available measurements and expected control signals, which vary across tasks.

Interface Alignment The LLM connects the instantiated modules to each other and the robot by
matching the outputs and inputs. It extracts the input of the task controller from available measure-
ments y, the input of the tracking controller from the task controller’s output v, and the robot control
from the tracking controller’s output u. For example, in the balance cart pole skill, the task controller
LQRController takes a 4D vector as input, requiring the LLM to extract these states from more
than 20 available measurements. Then, the LQRController computes the desired force on the cart,
which is a scalar, while the downstream tracking PoseForceHybridController requires two 6D
vectors as input for desired pose and force. The LLM must prepare the tracking controller input by
padding the task controller output.

Parameter Optimization The LLM infers unknown parameters for the dynamic models and con-
trollers via trial and error. For example, the LQR controller requires setting the Q and R matrices,
which are difficult to infer directly. The LLM identifies which parameters need tuning, selects
performance metrics from measurements, and tunes the parameters over multiple runs to improve
performance metrics. For example, in the balance cart-pole skill, LLM identifies Q and R as tun-
ing parameters and selects cart position and pole angle as metrics. This process is efficient due to
the well-studied parameter-performance relationships in common dynamicsand controllers as the
internalized knowledge of LLMs.

4 Experiment

The experiment is designed to manifest the following features: 1) Meta-Control enables synthesizing
skills for heterogeneous requirements; 2) Meta-Control exploits control knowledge from LLM; 3)
The Meta-Control pipeline is critical to the success; 4) Meta-Control works on a wide range of open
world tasks; 5) Meta-Control enables model-based analysis, providing formal guarantees on various
properties. 6) Meta-Control transfers to real robot and different embodiments easily.

We implement our pipeline with Drake[76], a framework designed for model-based control. For the
hardware experiment, we used a Kinova Gen3 robot arm. The language model is GPT 4.0.
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Figure 4: Three manipulation tasks that have inherently different challenges and requirements. The balance
task requires an accurate, high-frequency, feedback controller. The open door task requires properly handling
articulated objects, the executed trajectory has to perfectly match the swing path. The safe pick and place task
requires guaranteeing collision avoidance for the whole robot arm.

Figure 5: Meta-Control can automatically identify hyper-parameters that require tuning and tune them to ac-
complish challenging tasks. The figure shows the trajectory of the arm-held cart-pole system before and after
tuning the synthesized controller. The hyper-parameters Q =diag(10, 1, 100, 1), R = 0.01 are chosen and
tuned by the LLM with only 2 rounds of trial-and-error.

4.1 Meta control enables synthesizing challenging skills

As shown in fig. 3 and fig. 4, Meta-Control successfully synthesizes controllers for various chal-
lenging tasks with inherently different requirements, both in simulation and real-world. The task
challenges and synthesized control systems are summarized in table 1. A more detailed description
can be found in appendix B. fig. 5 shows that Meta-Control can identify core metrics and critical
parameters that affect performance, then efficiently and effectively tune the parameters based on the
metric through trial and error. The complete process of skill synthesis can be found at appendix C.

Task Challenge Meta-Control designed system

Open the door The robot trajectory must per-
fectly align with the door’s
swing path. position control
can easily lead to damage or
failure.

KinematicTrajectoryMPC + CartesianStiffnessCon-
troller, allowing imperfect trajectory planning and
tracking with compliant behavior to avoid damage or
failure.

Wipe the white-
board

Two different objectives: track-
ing position and maintaining
force

CartesianTrajectoryController + PoseForceController,
allowing position tracking while maintaining a desired
force on the whiteboard.

Balance the cart
pole

The pole is non-actuated. The
system is sensitive, requiring
high-frequency feedback and
convergence guarantee.

LQRController + PoseForceController. The LQR con-
troller gives the force to be applied on the cart, and the
hybrid position/force controller tracks the desired force
on the y-axis while maintaining a neutral pose on the
x-axis and the z-axis.

Collision-free
pick and place

whole-body collision free in
continuous time during whole
task.

KinematicTrajectoryMPC + SafeController, allowing
discrete-time planning and continuous-time whole-
body collision-free tracking.

Table 1: Experiment tasks, challenges and Meta-Control synthesized controllers..
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Figure 6: Meta-Control generalizes to different
embodiments because the synthesized controller is
fully model-based. A controller synthesized on Ki-
nova can transfer to Franka Pranda simply by re-
placing the robot dynamic model.

handle radius = 0.6m

handle radius = 0.3m

tall obstacle

short obstacleinitial angle = 0.1 rad

initial angle = -0.5 rad

Figure 7: Meta-Control synthesized control systems
are robust to attribute/state changes because of the
model-based design.

Method API API + Formulation API + Template Meta-Control

Balance
design 30% 90% 60% 100%

implementation 0% 30% 20% 90%
execution 0% 0% 0% 70%

Open door
design 40% 50% 60% 100%

implementation 10% 20% 10% 100%
execution 0% 0% 0% 80%

Safe Pick&place
design 0% 0% 40% 90%

implementation 0% 0% 0% 90%
execution 0% 0% 0% 90%

Table 2: Ablation study of Meta Control on three tasks and three steps.

4.2 Meta control exploits dynamics priors

We show that Meta-Control exploits the LLM’s prior knowledge of dynamics with the balance cart
pole task. The synthesized control system is described in appendix B. Specifically, LLM designs the
task space dynamics h(z, v) with a linear approximation in the form of ż = Az + Bv around the
upright position of the pole, where A and B are directly given by the LLM:

h(z, v) =


0 1 0 0
0 0

mpoleg
mcart

0
0 0 0 1

0 0
g(mcart+mpole)

lpolemcart
0

 z +


0
1

mcart

0
− 1

lpolemcart

 v.

This example demonstrates that Meta-Control exploits the dynamics priors from LLM, in contrast
to previous work that focuses more on spatial relationship priors from LLM∼[1, 4, 5]. Exploiting
dynamics priors enables Meta-Control to synthesize high-performance controllers rigorously.

4.3 Ablation study of the Meta Control pipeline

To demonstrate the necessity of the hierarchy formulation and the simplification using templates,
we performed an ablation study to show the success rate of control system synthesis under different
conditions. We test the success rate in 3 stages: design, implementation, and execution. We say
that a design is successful if the LLM-designed control system has the potential to perform the skill
judged by an expert. We say that the implementation is successful if the system can run without
errors. We say that the execution is successful if the control system performs the skill as required.
We repeat each task 10 times to compute the success rate. The randomness is caused by the LLM
with a default temperature 1.0. As shown in table 2, we can see that the success rates of all steps
in the baseline are lower than Meta-Control. Although LLM gives reasonable architectures to finish
the task in the Balance and Open Door task, the LLM fails to provide correct code and parameters
to realize the control system due to the complexity of the system and the huge design space. With
all the modules, we achieve the highest success rate for all tasks. The Safe Pick&Place task is
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Balance Open Door Safe Pick&Place

Pole Mass
0.01∼0.5 kg 10/10 Handle Height

0.3∼0.75 m 10/10 Obstacle Position
0.01∼0.3 m (y-axis) 10/10

Cart Mass
0.05∼0.5 kg 10/10 Handle Radius

0.3∼0.7 m 10/10 Obstacle Size
0.1∼0.45 m (height) 10/10

Initial Angle
-0.5∼0.5 rad 10/10 Door Mass

1∼30 kg 10/10 Place Position
-0.3∼0.3 m (x-axis) 10/10

Table 3: The synthesized controllers easily generalize to scenarios with different object states/attributes. The
left column lists the specific parameters for each scenario. The right column indicates the success rate (out of
10 trials) for each set of parameters.

especially difficult for the baseline because the baseline methods, even though prompted to avoid
collision, were unable to successfully design a controller that can avoid collision continuously.

4.4 Generalization to different attributes/states

Meta-Control synthesized control systems can easily generalize to scenarios of different attributes/s-
tates due to the model-based nature. Given a successfully synthesized control system, we test differ-
ent attributes/states and calculate the success rate. The range of change and the results are shown in
table 3. Examples are shown in fig. 7. Meta-Control achieved 100% success rate for all scenarios.

4.5 Meta Control enables Model-based Analysis

One merit of our method is that the synthesized controller is fully model-based, allowing a rigorous
formal analysis for a variety of properties:

Convergence and Stability: For the balance cart-pole task, we can provide a guarantee of con-
vergence by solving the Riccati equation for the LQR controller. The closed-loop system matrix
A−BK has the following four eigenvalues: −412.29,−9.925,−1.502+1.175j,−1.502−1.175j.
All of them have negative real parts, which means that the system is guaranteed to converge. More
rigorous analysis can be conducted by taking the linearization error into consideration.

Constraint satisfiability and Forward Invariance: In the pick-and-place task, an MPC task
controller is tracked by a safe controller. The safe controller is realized with a safety index (also
known as the barrier function), which guarantees collision avoidance with mathematical proofs∼[77,
78]: it ensures the system state always satisfies min{dmin−d(x), 100·(0.022−d(x)2)−10·ḋ(x)} <
0, where dmin is the allowable minimum distance between the robot and the obstacle, d(x) and ḋ(x)
are the relative distance and relative velocity from the robot to the obstacle, respectively.

4.6 Transfer to real robot and different embodiments

The control system for opening door is synthesized in simulation and is executed in both simulation
and the real world. As shown in fig. 3 and fig. 4, the behavior is consistent and no sim-to-real
gap is observed because the synthesized controller is model-based, closed-loop, highly explainable,
and math-guaranteed. The controller can also generalize to different embodiments with the same
low-level API (e.g. 6 DoF joint torque) given the model of the new embodiments, shown in fig. 6.

4.7 Failure analysis

We analyze the failure cases in table 2 and summarized their reasons. 1. Mathematical error: Al-
though LLM can give a mathematical description of the approximate dynamic model for an unseen
system, it can make mistakes in math. For example, for the h(z, v) synthesized for the Cart Pole
system, it can miss a term in the A matrix, or mess up signs (use + when − is desired). 2. Failure
to follow instructions: We require the LLM to provide a structured response so that a program can
extract the code and plug it into the robotic system. However, sometimes LLM fails to follow the
instruction, leading to responses of wrong format. 3. Incorrect reasoning: In the open-door task,
the LLM infers the target location of the door knob. However, the LLM may infer a wrong target
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given the environment information. Although these are still challenging for LLMs, we believe that
they can be overcome with the rapid development of LLMs in the near future.

5 Limitation and Discussion

In this work, we propose Meta-Control, a novel framework for zero-shot model-based control sys-
tem synthesis using LLM, tailored for heterogeneous robotic tasks. Through both simulations and
real-world tests, we demonstrate Meta-Control’s potential to expand the autonomous capabilities of
robots. Despite compelling results, Meta-Control has several limitations. Such as dependency on
accurate system state estimation, which may not be available in some open-world tasks, and de-
pendency on predefined dynamic models and control templates, which may restrict adaptability to
completely new heterogeneous tasks. The synthesis process also demands substantial computational
resources, which could hinder real-time synthesis. Future directions include enabling automatic per-
ception selection, incorporating learning-based templates, and accelerating synthesis speed.
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A Joint torques during openning a door

As shown in fig. 8, openning a door with position control can lead to very large joint torques, leading
to failure or dangerous behaviors. But with a compliant controller, the joint torques are much smaller
and the door is opened successfully without damage.

Figure 8: Joint torque range during opening door for the baseline (position control) and the Meta-Control
synthesized controller (stiffness control). The baseline has a huge torque because the planned trajectory is
inaccurate, which leads to damage.

B Task descriptions

Open the door Opening a door is a challenge for robots because a door has a fixed swing path that
must be followed exactly. As shown in fig. 3, position control can easily lead to door damage or
failure of action. Therefore, it is preferable to open a door with a compliant controller. With multi-
ple rounds of experiments, we found that Meta-Control synthesized control system usually involves
a CartesianStiffnessController acting as the task controller or the tracking controller. Al-
though the trajectory may not be perfectly aligned with the swing path, with the stiffness controller,
the robot can still open the door because it complies with the force given by the door.

Wipe the board Wiping a board requires a certain amount of force to be applied on the board while
moving the eraser, which involves two different objectives: position tracking and force tracking. As
shown in fig. 3, the synthesized controller successfully removes the marks, while control frameworks
that only consider spatial relationships are not suitable for this task because of the lack of force
constraints. In most trials, Meta-Control chooses a CartesianInterpolationController as
task controller, and a PoseForceController as tracking controller. The Cartesian interpolation
controller plans the trajectory of the eraser, while the hybrid position/force controller tracks the
trajectory while maintaining a desired force on the board to erase.

Balance the cart pole Cart pole is a classic control tasks that have been extensively studied. At-
tempts were made to synthesize a simple PID controller with LLM to balance a pole with predefined
API where the cart can be controlled directly [1]. However, in this experiment, we use a robot arm
to hold the cart and ask LLM to balance it by controlling the robot arm. This is a significantly more
challenging task because only low-level APIs of the robot arm are given, and the pole is attached to
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the cart with a non-actuated free joint. The LLM has to understand the relationship from the arm to
the cart, and from the cart to the pole. In most cases, our method chooses an LQRController as
the task controller and the PoseForceController as the tracking controller. The LQR controller
gives the force to be applied on the cart along the pole joint direction (y-axis) to balance the pole,
and the hybrid position/force controller tracks the desired force on the y-axis while maintaining a
neutral pose on the x-axis and the z-axis. Profile of the pole’s angle is shown in fig. 5, which shows
that the synthesized controller efficiently balanced the pole.

The synthesized control system is described below:

y = [Poleθ,Poleω,Carty,Cartẏ]
v = End-effector (EE) force on y−axis

h(z, v) = Linearized Cart Pole dynamics
πv(y) = LQR controller

x = Joint states,EEtarget
force ,EEtarget

pose

u = Joint torques
f(x, u) = Kinova dynamics model

πu(x, y, v) = Pose Force Controller

where

h(z, v) =


0 1 0 0
0 0

mpoleg
mcart

0
0 0 0 1

0 0
g(mcart+mpole)

lpolemcart
0

 z +


0
1

mcart

0
− 1

lpolemcart

 v.

Collision-free pick and place Pick and place is a very common skill in daily life. In this
task, we require the robot arm to reach a goal position while maintaining whole-body collision
free. The goal position can be either the location of the object or the target location. In most
cases, the LLM chooses a KinematicTrajectoryModelPredictiveController as the task
controller to generate collision-free way-points for reaching the goal, and a SafeController as
the tracking controller to guarantee collision-free in continuous time. In most cases, the LLM
chooses a KinematicTrajectoryModelPredictiveController as the task controller to gener-
ate collision-free way-points for reaching the goal, and a SafeController as the tracking controller
to guarantee collision-free in continuous time.

C Full conversation

The full conversation on skill synthesis is attached below. Some long numerical arrays are omitted
for the sake of clarity. Controller templates, dynamical model templates, and input port samples are
attached after the conversation.

C.1 Design via Templates

## System
The GPT is a professor in robot control and a proficient programmer of Python and PyDrake. A robot task

can be accomplished by sequentially executing several skills. The GPT will help the user write code to
compose one of the skills after reading the requirements. The GPT will be instructed step by step. A
skill is accomplished hierarchically by a task controller and a tracking controller. The task
controller is responsible for generating high-level and abstract control, and the tracking controller
is responsible for tracking the high-level control and satisfying constraints.

↪→
↪→
↪→
↪→
↪→

Here are some optional principles to design the task controller and the tracking controller:
1. Design the task controller for the object of interest or end-effector, and design the tracking

controller for the robot.↪→
2. Design the task controller on simplified or approximated dynamics, such as Cartesian space or an

approximated linear model, and design the tracking controller on the full robot dynamics.↪→
3. If the skill involves multiple objectives, design the task controller to take care of the primary

objective and design the tracking controller to take care of the rest of the objectives and
constraints. The task controller and the tracking controller can both output joint torque.

↪→
↪→
4. Task control is often the position, velocity, acceleration or force in the Cartesian space. But in some

cases, the task control is best to be joint torque.↪→
5. The final output of the tracking controller must be joint torques.
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The GPT will proceed the following steps: task_controller, tracking_controller, task_model,
tracking_model. In the GPT's response, the most important part will be <step_name> followed by a code
block enclosed by ```python```. Each code block should correspond to a single step. This explicitly
indicates the code is written for a specific step. The GPT can feel free to make some plans to help it
think before writing the code blocks. There is no need to explain the code after the code block. The
GPT should not import any module. The GPT should not make up arguments, variables, or anything else
that is not mentioned.

↪→
↪→
↪→
↪→
↪→
↪→

## User
Please help me to compose a skill to stabilize a cart pole. The cart is attached to the end effector of

the robot arm. The pole rotates freely around the x-axis and is unactuated. Please stabilize the pole
around the upright position (when the pole angle, denoted by PolePin, is 0) by exerting force on the
cart along the y-axis. A secondary objective is to keep the end-effector pose as close as possible to
[1.57078469e+00, 0.0, 1.57079455e+00, 5.96598901e-01, 1.34625984e-03, 4.33589236e-01] ([roll, pitch,
yaw, x, y, z]). The cart is 0.1 kg, and the pole is 0.25 m, 0.01 kg.

↪→
↪→
↪→
↪→
↪→

## Assistant
Certainly! I'm good at writing controllers for robots with PyDrake. I will follow your instructions

carefully and think carefully.↪→

## User
Let's first take a look of all available measurements, dynamic models, and controllers.

Here are all available inputs to the skill:
{skill_inputs_sample}

Here are all available dynamic model setup functions in yaml format:
{dynamic_model_brief_str}

Here are all available controllers in yaml format:
{controller_brief_str}

====================================================

Based on the available measurements, models, and controllers, please think step by step to choose the
models and controllers:↪→

1. Decide the subject of the task controller, is it an object, the end effector, or something else.
2. Decide the desired task control to be applied on the subject, is it Cartesian position, Cartesian

force, or something else.↪→
3. Decide the task space model that can model the dynamics of the subject with the task control. When the

analytical form of the dynamics model is needed, draw upon your extensive knowledge of control theory
and system modeling. Think step by step to make sure the model is correct according to the task
description.

↪→
↪→
↪→
4. Decide the task controller that can apply the desired task control and realize the goal of the skill.

Make sure the controller can realize the goal with the given available measurements. There are no
additional inputs or functions provided to the controller.

↪→
↪→
5. Decide the tracking space model.
6. Decide the tracking controller to track the output of the task controller and to satisfy possible

constraints.↪→

Detail about how can the chosen models and controllers realize the skill goal. Be specific.

Please return the choice with the following format.

<task_model>
```python
task_model = setup_model(arg1, arg2)
```

<tracking_model>
```python
tracking_model = setup_model(arm_type, object_info)
```

<task_controller>
```python
task_controller = ControllerClass(arg1, arg2)
```

<tracking_controller>
```python
tracking_controller = ControllerClass(arg1)
```

Make sure your response complies with the following requirements:
* <step_name> must be included before each code block so the code block can be recognized. step_name must

be enclosed in angle brackets <>.↪→
* Choices have been made for all steps. A correct solution exists with the given information.
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* Pass the arguments (args) when instantiating the controller and the model. The arguments needed are
stated in the yaml file (args). **Do not** include items in "input_ports" (such as
"controller_parameters") as arguments when instantiating the controllers. They are not arguments for
instantiating the controller.

↪→
↪→
↪→
* The arguments should be defined before use, except `arm_type` and `object_info`, which can be used

directly without definition.↪→
* Do not use any placeholder or assume any variable is defined. All information and available variables

needed are provided. If your choice of model and controller requires additional information, rethink
it.

↪→
↪→
* The models and controllers are instantiated correctly as stated in the materials.
* The chosen model matches the required model of the controllers as stated in the materials.

## Assistant
Considering the requirements and the available models and controllers, let's proceed step by step to

accomplish the task of stabilizing the cart pole attached to the end effector of the robot arm and
achieving the secondary objective of keeping the end-effector's pose as close as possible to the
specified position.

↪→
↪→
↪→

1. **Subject of the Task Controller:** Since the primary goal is to stabilize the pole around the upright
position by exerting force along the y-axis to the cart, the task subject is "the cart and the pole
system". This suggests we require a control method directly influencing the cart to alter the pole's
position, making it a system-level control problem involving both the cart and the pole.

↪→
↪→
↪→

2. **Desired Task Control:** The control needed is a force along the y-axis on the cart, which indirectly
influences the pole's angle to achieve stabilization.↪→

3. **Task Space Model:** We need a model that accurately represents the dynamics of the cart-pole system
for the application of a controlling force. Given the problem's nature, a linear model approximation
around the upright position of the pole can be suitable. Therefore, I will choose the
`setup_linear_model` because it can approximate the dynamics of the cart-pole system in an affine
manner suitable for designing a controller to apply the required force.

↪→
↪→
↪→
↪→

4. **Task Controller:** To apply the desired task control (force), an appropriate choice is an
`LQRController`. LQR (Linear-Quadratic Regulator) is well-suited for stabilizing the system around the
equilibrium point (the upright position), given it requires a model of the system dynamics, which
aligns well with our choice of a linear model.

↪→
↪→
↪→

5. **Tracking Space Model:** For the secondary goal, the model needs to incorporate the arm dynamics along
with the constraints such as the end-effector's pose. The `setup_arm_with_objects_model` would be a
suitable choice because it returns a model considering the robot arm and static objects, allowing
control over the arm to maintain the end-effector's position while keeping the primary task of pole
stabilization.

↪→
↪→
↪→
↪→

6. **Tracking Controller:** Considering we must respect both a desirable end-effector pose and exert
control forces to stabilize the pole, a `PoseForceController` is selected for the tracking controller.
This controller is capable of handling specific forces and poses, making it perfect for managing the
secondary objective of maintaining the end-effector's pose.

↪→
↪→
↪→

Let's proceed with specifying the models and controllers as per our choice:

<task_model>
```python
x0 = np.zeros((4,1)) # Initializing the state for the cart-pole system
u0 = np.zeros((1,1)) # Initial control input (force)
m_cart = 0.1 # mass of the cart
m_pole = 0.01 # mass of the pole
l_pole = 0.25 # length of the pole
g = 9.81 # gravitational acceleration
# A and B matrices are placeholders and must be defined based on the specific dynamics of the cart-pole

system↪→
A = np.array([[0, 1, 0, 0],

[0, 0, m_pole * g / m_cart, 0],
[0, 0, 0, 1],
[0, 0, (m_cart + m_pole) * g / (l_pole * m_cart), 0]])

B = np.array([[0], [1/m_cart], [0], [-1/(l_pole*m_cart)]])
C = np.eye(4)
D = np.zeros((4, 1))
task_model = setup_linear_model(x0, u0, A, B, C, D)
```

<tracking_model>
```python
tracking_model = setup_arm_with_objects_model(arm_type, object_info)
```

<task_controller>
```python
Q = np.diag([1, 1, 10, 10]) # Emphasizing the importance of the pole's position and velocity
R = np.array([[0.1]]) # Control effort cost
task_controller = LQRController(task_model, Q, R, x0, u0)
```
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<tracking_controller>
```python
force_control_axis_mask = np.array([False, False, False, False, True, False]) # Force control along the

y-axis↪→
tracking_controller = PoseForceController(tracking_model, force_control_axis_mask)
```

This sequence of models and controllers fulfills the skill's requirements by utilizing a systematic and
hierarchical control structure.↪→

## User
Here is the output of running the skill: <empty>

Human expert supplementary instructions: <empty>

Do you think it is working as expected? (Empty output means the system is running without errors)
If it is, please answer with one word "yes".
If it is not, please identify which step(s) went wrong and explain how to fix it by including which

step(s) to modify (<step_name>) and the updated code (enclosed by ```python```). We have proceeded
with the following steps:

↪→
↪→
- task_model
- tracking_model
- task_controller
- tracking_controller

Please do not make up a step.

If the system is not working as expected, you must modify at least one step. You can modify multiple
steps. Remember to add "<step_name>" before the corresponding code block. A correct solution exists
with the given information. Try your best.

↪→
↪→

Here is a sample response when it is not working as expected:

I think this error occurred because [for some reason].

<tracking_controller>

updated_code:
```python
tracking_controller = NewTrackingController(arg1, arg2)
```

## Assistant
yes

## User
Please summarize the choice of the task controller and the tracking controller. How would you expect the

input output ports of the controllers to be connected to perform the skill? This response will be used
as prompts to implement the port connector, so please include all necessary information, including:

↪→
↪→

* The detailed description of the input ports for the task controller and the tracking controller,
including the meaning of each dimension (be careful about the order), and how to get them from the
available measurements or outputs.

↪→
↪→
* A description of any constant parameter you have used that may affect the performance of the control

system.↪→
* Everything else you think is necessary to implement the controller by only reading the summary.

## Assistant
To implement the port connector for performing the skill of stabilizing a cart pole attached to the end

effector of a robot arm, we selected two controllers: an `LQRController` for the task controller and a
`PoseForceController` for the tracking controller. Here is the summary of how these controllers are
expected to interact and how their inputs and outputs should be connected:

↪→
↪→
↪→

### Task Controller (LQRController)
- **Input Ports:**

- `state`: It represents the current state of the cart-pole system. For the `LQRController`, this state
vector is expected to have dimensions `[x, x_dot, theta, theta_dot]` where `x` and `x_dot` represent
the position and velocity of the cart along the y-axis (as force is applied along the y-axis), and
`theta` and `theta_dot` represent the pole's angle (around the x-axis) and angular velocity,
respectively. This state can be constructed from the `measured_body_poses`,
`measured_body_velocities` for the 'Cart', and 'PolePin' measurements from `measured_joint_states`.

↪→
↪→
↪→
↪→
↪→

- **Output Ports:**
- `control`: This port outputs the computed control input based on the LQR control law. For our

application, this control input is a single scalar value representing the force to be applied along
the y-axis to the cart.

↪→
↪→

### Tracking Controller (PoseForceController)
- **Input Ports:**
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- `ee_pose_target`: This input requires the desired end-effector pose in the format `[roll, pitch, yaw,
x, y, z]`. Since our primary goal is to keep the end-effector's pose as close as possible to a
specified target while applying force to stabilize the pole, this target pose is set as a constant
parameter `[1.57078469, 0.0, 1.57079455, 0.596598905, 0.00134625984, 0.483592036]`. Note that the
force along the y-axis, which acts on the cart to stabilize the pole, is managed by this
controller's `ee_force_target`.

↪→
↪→
↪→
↪→
↪→
- `ee_force_target`: This input specifies the desired end-effector force in the format `[x-rotation,

y-rotation, z-rotation, x-translation, y-translation, z-translation]`. The output from the task
controller (LQRController) indicating the force to be applied along the y-axis to the cart will be
fed into this port. All other dimensions are set to 0 as we are only interested in exerting force
along the y-axis.

↪→
↪→
↪→
↪→
- `arm_position` and `arm_velocity`: These inputs provide the current joint positions and velocities of

the robot arm, respectively. They are directly obtained from `measured_arm_position` and
`measured_arm_velocity`.

↪→
↪→

- **Output Ports:**
- `applied_arm_torque`: This port outputs the computed joint torques for the robot arm, which are

derived based on the desired force and pose control objectives.↪→

### Constant Parameters Used
1. For the `LQRController`, we introduced a state cost matrix `Q` with higher weights on the pole's angle

and angular velocity to emphasize the importance of stabilizing the pole. A relatively small control
cost `R` is chosen to allow the application of necessary control efforts without being overly
penalized.

↪→
↪→
↪→

2. In the `PoseForceController`, we used a constant target pose for the end-effector, with force control
primarily along the y-axis. The Boolean array `force_control_axis_mask` is configured to apply force
control only along the y-axis and pose control for all other dimensions.

↪→
↪→

### Summary
To connect these controllers effectively:
- The `state` input port of the `LQRController` must be assembled from available measurements,

particularly focusing on the cart position and velocity along the y-axis and the pole's angle and
angular velocity.

↪→
↪→
- The output control force from the `LQRController` must be properly directed to the `ee_force_target`

input port of the `PoseForceController`, specifically into the dimension controlling force along the
y-axis.

↪→
↪→
- The `ee_pose_target`, `arm_position`, and `arm_velocity` ports of the `PoseForceController` require

direct measurements or set targets, with the end-effector pose being a specified constant.↪→
- The final output of `applied_arm_torque` from the `PoseForceController` determines the joint torques to

achieve both stabilization of the pole and maintaining the end-effector's desired pose.↪→

This approach integrates both controllers to manage the primary objective of pole stabilization and the
secondary objective of maintaining the end-effector pose efficiently.↪→

C.2 Interface Alignment

## System
The GPT is a proficient programmer of Python and PyDrake and a professor in control. The GPT will help the

user to accomplish the code after reading the requirements. The GPT will be instructed step by step so
please only complete mentioned tasks. The code implements a robot skill through a hierarchical design.
A task controller is chosen to give high-level control, and a tracking controller is given to track
the task control. The task controller and the tracking controller will be given. The GPT needs to
accomplish a task controller converter and a tracking controller converter. A converter transforms
available measurements and ports to the required input ports of the controller.

↪→
↪→
↪→
↪→
↪→
↪→

The GPT will proceed with the following steps: task_callback, and tracking_callback. In the GPT's
response, the most important part will be <step_name> followed by a code block enclosed by
```python```. Each code block should correspond to a single step. This explicitly indicates the code
is written for a specific step. The GPT can feel free to make some plans to help it think before
writing the code blocks. There is no need to explain the code after the code block. The GPT should not
import any module. The GPT should not make up arguments, variables, and anything else that is not
mentioned.

↪→
↪→
↪→
↪→
↪→
↪→

## User
Please help me to compose a skill to stabilize a cart pole. The cart is attached to the end effector of

the robot arm. The pole rotates freely around the x-axis and is unactuated. Please stabilize the pole
around the upright position (when the pole angle, denoted by PolePin, is 0) by exerting force on the
cart along the y-axis. A secondary objective is to keep the end-effector pose as close as possible to
[1.57078469e+00, 0.0, 1.57079455e+00, 5.96598901e-01, 1.34625984e-03, 4.33589236e-01] ([roll, pitch,
yaw, x, y, z]). The cart is 0.1 kg, and the pole is 0.25 m, 0.01 kg.

↪→
↪→
↪→
↪→
↪→

## Assistant
Certainly! I'm good at writing callback functions for ports in PyDrake. I will follow your instructions

carefully and think carefully.↪→

## User
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Now please implement callback functions of a `LeafSystem` that acts as a connector which I have already
constructed. The input ports correspond to inputs to the skill (observations and controller
parameters). The output ports correspond to the input ports of the task controller.

↪→
↪→
Here is a yaml file describing what the inputs to the skill are:
{skill_input_summary}

Here we print the port name, type, and sample value for all the input ports. You can get the value of the
port by `value = self.GetInputPort(port_name).Eval(context)` when implementing the call back
functions:

↪→
↪→
{input_port_sample}

The chosen task model, tracking model, task controller, and tracking controller are
```python

x0 = np.zeros((4,1)) # Initializing the state for the cart-pole system
u0 = np.zeros((1,1)) # Initial control input (force)
m_cart = 0.1 # mass of the cart
m_pole = 0.01 # mass of the pole
l_pole = 0.25 # length of the pole
g = 9.81 # gravitational acceleration
# A and B matrices are placeholders and must be defined based on the specific dynamics of the cart-pole

system↪→
A = np.array([[0, 1, 0, 0],

[0, 0, m_pole * g / m_cart, 0],
[0, 0, 0, 1],
[0, 0, (m_cart + m_pole) * g / (l_pole * m_cart), 0]])

B = np.array([[0], [1/m_cart], [0], [-1/(l_pole*m_cart)]])
C = np.eye(4)
D = np.zeros((4, 1))
task_model = setup_linear_model(x0, u0, A, B, C, D)

tracking_model = setup_arm_with_objects_model(arm_type, object_info)

Q = np.diag([1, 1, 10, 10]) # Emphasizing the importance of the pole's position and velocity
R = np.array([[0.1]]) # Control effort cost
task_controller = LQRController(task_model, Q, R, x0, u0)

force_control_axis_mask = np.array([False, False, False, False, True, False]) # Force control along the
y-axis↪→

tracking_controller = PoseForceController(tracking_model, force_control_axis_mask)

```

Here is the design summary to explain the expected way of how do the controllers work, and how to connect
the ports:↪→

{design_summary} (from Design via Templates)

Here is the summary of the input ports of the task controller:
{task_controller_input_summary} (from the controller summary)

The functions you need to implement are:
```python
def task_state(self, context, output: BasicVector)

pass

```
Here is an example response:

<task_callback>
```python
def place_holder_function(self, context, output: BasicVector):

abstract_input_port_value = self.GetInputPort(port_name).Eval(context)
output.SetFromVector(abstract_input_port_value["place_holder_key"])

def place_holder_function2(self, context, output: BasicVector):
vector_input_port_value = self.GetInputPort(port_name).Eval(context)
out = np.zeros(6)
out[3] = vector_input_port_value[0]
output.SetFromVector(out)

def place_holder_function3(self, context, output: AbstractValue):
value = self.GetInputPort(port_name).Eval(context)
output.set_value(value)

```
Please implement all the task callback functions in one code block beginning with <task_callback>.

Here are some tips to implement the callback functions:
* When use a port, make sure the name of the port is correct and the port is available in the current

function.↪→
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* Note that some of the ports should be passed through without any modification like control_parameters.
Some of the ports need to be modified.↪→

* Make sure the dimensions of the output match the port. The output value may be only partially available
from the input port. You need to decide the value for the remaining. Be careful of which dimension to
set value, make sure it complies with the description of the port in the controller summary.

↪→
↪→
* For pose, velocity, and force vectors, rotation always comes first, such as [roll, yaw, pitch, x, y, z]

or [x-rotation, y-rotation, z-rotation, x-translation, y-translation, z-translation].↪→
* If the input port is a dictionary, make sure only use keys that has shown in the printed port value

sample.↪→
* If the output should be an enum type, you can use the enum type mentioned in the controller summary

directly without any import.↪→
* Recall the task requirements given in the beginning. Make sure the call back functions correctly to

solve the task.↪→
* Please avoid using placeholders or simplified examples that require modifications by others. Ensure all

calculations are conclusive. In case of any uncertainties about parameters, utilize the information
provided to derive the most informed inference available.

↪→
↪→
* You can use `self.num_q` to denote the number of joints

Please implement the call-back functions. Please think step by step then write the code.

## Assistant
<task_callback>
```python
def task_state(self, context, output: BasicVector):

# Extracting necessary inputs
measured_body_poses = self.GetInputPort("measured_body_poses").Eval(context)
measured_body_velocities = self.GetInputPort("measured_body_velocities").Eval(context)
measured_joint_states = self.GetInputPort("measured_joint_states").Eval(context)

# Initialize state vector with zeros
state = np.zeros(4)

# Position and Velocity of Cart along y-axis from body poses and velocities
cart_pose = measured_body_poses['Cart'].translation()
cart_velocity = measured_body_velocities['Cart'].translational()
state[0] = cart_pose[1] # y position of Cart
state[1] = cart_velocity[1] # y velocity of Cart

# Pole's angle (around x-axis) and angular velocity from joint states
pole_angle = measured_joint_states['PolePin']['positions']
pole_angular_velocity = measured_joint_states['PolePin']['velocities']
state[2] = pole_angle[0] # Assuming 'positions' is a numpy array with one element
state[3] = pole_angular_velocity[0] # Assuming 'velocities' is a numpy array with one element

output.SetFromVector(state)
```

## User
Now please implement callback functions of a `LeafSystem` that acts as a connector which I have already

constructed for the tracking controller. The input ports correspond to inputs to the skill
(observations and controller parameters) and task control (the output of the task controller). The
output ports correspond to the input ports of the tracking controller.

↪→
↪→
↪→

Recall the input port of the skill given previously, and the following is a description of the task
control port. You can use all skill input ports and the task control port.↪→

{task_control_port_summary} (from the controller summary)

Here is the summary of the input ports of the tracking controller:
{tracking_controller_input_summary} (from the controller summary)

The functions you need to implement are:
```python
def tracking_ee_pose_target(self, context, output: BasicVector)

pass

def tracking_ee_force_target(self, context, output: BasicVector)
pass

def tracking_arm_position(self, context, output: BasicVector)
pass

def tracking_arm_velocity(self, context, output: BasicVector)
pass

```
Here is an example response:

<tracking_callback>
```python
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def place_holder_function(self, context, output: BasicVector):
abstract_input_port_value = self.place_holder_port.Eval(context)
output.SetFromVector(abstract_input_port_value["place_holder_key"])

def place_holder_function2(self, context, output: BasicVector):
vector_input_port_value = self.place_holder_port.Eval(context)
out = np.zeros(6)
out[3] = vector_input_port_value[0]
output.SetFromVector(out)

def place_holder_function3(self, context, output: AbstractValue):
value = self.place_holder_port.Eval(context)
output.set_value(value)

```

Follow the previously given tips for implementing the callback functions. Furthermore:
* Note that output ports of the task controller have been renamed by adding the prefix: 'task_' +

port_name.↪→

Now please implement the call-back functions. Please think step by step then write the code.

## Assistant
<tracking_callback>
```python
def tracking_ee_pose_target(self, context, output: BasicVector):

# Desired end-effector pose is constant as per design summary
desired_ee_pose = [1.57078469e+00, 0.0, 1.57079455e+00, 5.96598901e-01, 1.34625984e-03,

4.33589236e-01]↪→
output.SetFromVector(np.array(desired_ee_pose))

def tracking_ee_force_target(self, context, output: BasicVector):
# Obtaining the control action from task controller, directing it to apply force along y-axis
task_control = self.GetInputPort("task_control").Eval(context)
# Only force along the y-axis is controlled, the rest is masked out with zeros.
ee_force_target = np.array([0.0, 0.0, 0.0, 0.0, task_control[0], 0.0])
output.SetFromVector(ee_force_target)

def tracking_arm_position(self, context, output: BasicVector):
# Directly passing the robot arm's measured position
measured_arm_position = self.GetInputPort("measured_arm_position").Eval(context)
output.SetFromVector(measured_arm_position)

def tracking_arm_velocity(self, context, output: BasicVector):
# Directly passing the robot arm's measured velocity
measured_arm_velocity = self.GetInputPort("measured_arm_velocity").Eval(context)
output.SetFromVector(measured_arm_velocity)

```

## User
Here is the output of running the skill: <empty>

Human expert supplementary instructions: <empty>

Do you think it is working as expected? (Empty output means the system is running without errors)
If it is, please answer with one word "yes".
If it is not, please identify which step(s) went wrong and explain how to fix it by including which

step(s) to modify (<step_name>) and the updated code (enclosed by ```python```). We have proceeded
with the following steps:

↪→
↪→
- task_callback
- tracking_callback

Please do not make up a nonexist step.

If the system is not working as expected, you must modify at least one step. You can modify multiple
steps.↪→

For each step, you can only modify the function that you think is wrong. Others will be kept unchanged.
Remember to add "<step_name>" before the corresponding code block. A correct solution exists with the

given information. Try your best.↪→

Here is a sample response when it is not working as expected:

I think this error occurred because [some reason].

updated_code:
<tracking_callback>

```python
def tracking_arm_position(self, context, output: BasicVector):

...
```

## Assistant
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yes

## User
Please summarize the task_controller, tracking_controll, task_callback and the tracking_callback. Explain

the data flow. This response will be used as a prompt to choose the performance metric from
measurements and tune the controller parameters, so please include all necessary information.

↪→
↪→

## Assistant
The integration of the task and tracking controllers with their respective callback functions forms a

comprehensive control loop for stabilizing a cart-pole system attached to the end effector of a
robotic arm. Here's a summary of the components and their data flow:

↪→
↪→

### Task Controller (`LQRController`)
- **Purpose:** Stabilizes the cart-pole system around the upright position by computing a control force to

be applied along the y-axis of the cart.↪→
- **Input Port:**

- `state`: Accepts a state vector `[x, x_dot, theta, theta_dot]`, representing cart position and
velocity along the y-axis, and pole angle and angular velocity, respectively.↪→

- **Output Port:**
- `control`: Outputs a control action (force) based on the LQR control law.

- **Implemented by Function:** `task_state` in `<task_callback>`.

### Tracking Controller (`PoseForceController`)
- **Purpose:** Aligns the end effector's pose with a target pose while applying the computed force from

the task controller to stabilize the pole.↪→
- **Input Ports:**

- `ee_pose_target`: Takes a constant target pose for the end effector.
- `ee_force_target`: Receives the control action (force along the y-axis) from the task controller to be

applied by the end effector.↪→
- `arm_position`: Provides current joint positions of the robot arm.
- `arm_velocity`: Provides current joint velocities of the robot arm.

- **Output Port:**
- N/A (As these inputs directly dictate the behavior of the end effector and arm based on internal

tracking control logic).↪→
- **Implemented by Functions:** `tracking_ee_pose_target`, `tracking_ee_force_target`,

`tracking_arm_position`, and `tracking_arm_velocity` in `<tracking_callback>`.↪→

### Data Flow
1. **Observations to Task Controller:**

- The cart's position and velocity, along with the pole angle and angular rate, are extracted from the
`measured_body_poses`, `measured_body_velocities`, and `measured_joint_states`. These values are
aggregated into a state vector `[x, x_dot, theta, theta_dot]` by the `task_state` function in the
task controller callback, which feeds into the `LQRController`.

↪→
↪→
↪→

2. **Task Controller to Tracking Controller:**
- The computed control action (force) from the `LQRController` is passed to the

`tracking_ee_force_target` function in the tracking controller callback. It sets this force as the
end effector's desired force along the y-axis while keeping forces in other dimensions at zero.

↪→
↪→

3. **Observations to Tracking Controller:**
- Direct observations of the robot arm's joint positions and velocities (`measured_arm_position` and

`measured_arm_velocity`) are passed through `tracking_arm_position` and `tracking_arm_velocity`
functions to their respective input ports on the tracking controller.

↪→
↪→

4. **Constant Parameters:**
- A constant target pose for the end effector is set within the `tracking_ee_pose_target` function,

reflecting the secondary objective of maintaining the end-effector pose close to a predefined pose.↪→

#### Performance Metric Selection and Controller Tuning:
To tune the controller parameters and select an appropriate performance metric, the complete flow of data

and objectives should be considered:↪→
- For the **task controller**, the performance metric might include the Euclidean distance between the

current pole position/angle and its upright position (zero angle), the root-mean-square error (RMSE)
of the pole's angle over time, or the control effort exerted.

↪→
↪→
- Tuning parameters for the task controller (`LQRController`) include adjusting the `Q` and `R` matrices,

which balance between penalizing deviation from the target state and the magnitude of the control
effort.

↪→
↪→

- For the **tracking controller**, the performance metric might focus on the precision of the end
effector's pose alignment with its target and the magnitude of applied forces.↪→

- Tuning involves the force control axis mask and potentially adjusting internal pose control parameters
within the `PoseForceController` to achieve desired tracking performance and responsiveness.↪→

By carefully monitoring these performance metrics and adjusting controller parameters accordingly, the
control schemes can be refined to optimize both the primary objective of stabilizing the pole and the
secondary objective of maintaining the desired end-effector pose.

↪→
↪→
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C.3 Parameter Optimization

## System
The GPT is a proficient programmer of Python and PyDrake and a professor in control. The GPT will help the

user to revise the code after reading the requirements. The GPT will be instructed step by step so
please only complete mentioned tasks. The code implements a robot skill through a hierarchical design.
A task controller is chosen to give high-level control, and a tracking controller is given to track
the task control. The task controller and the tracking controller are connected through callback
functions. The GPT will help to tune the parameters and check variable assignments of the hierarchical
control systems. A time series of the task controller state and control will be given to help you
determine if the system is running as expected. Then GPT needs to decide if the time series is
desired, and then identify parameters and variables that can affect the time series. In the end, The
GPT needs to tune the parameters and variables through multiple rounds of interaction.

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→

The GPT can update any of the following code blocks: <task_model>, <tracking_model>, <task_controller>,
<tracking_controller>, <task_callback>, <tracking_callback>. Each time, the GPT needs to pick and
rewrite one or more blocks to update the parameters or variable assignments. The parameters and
variables can be anything defined in the code. Sometimes, it may require switching the order of
dimensions to correct the implementation error.

↪→
↪→
↪→
↪→

In the GPT's response, the most important part will be <block_name> followed by a code block enclosed by
```python```. This explicitly indicates the code is written for a specific block. The GPT needs to
give the complete updated code block that contains the revision. The GPT can feel free to make some
plans to help it think before writing the code blocks. There is no need to explain the code after the
code block. The GPT should not import any module. The GPT should not make up arguments, variables, and
anything else that is not mentioned.

↪→
↪→
↪→
↪→
↪→

## User
Please help me to compose a skill to stabilize a cart pole. The cart is attached to the end effector of

the robot arm. The pole rotates freely around the x-axis and is unactuated. Please stabilize the pole
around the upright position (when the pole angle, denoted by PolePin, is 0) by exerting force on the
cart along the y-axis. A secondary objective is to keep the end-effector pose as close as possible to
[1.57078469e+00, 0.0, 1.57079455e+00, 5.96598901e-01, 1.34625984e-03, 4.33589236e-01] ([roll, pitch,
yaw, x, y, z]). The cart is 0.1 kg, and the pole is 0.25 m, 0.01 kg.

↪→
↪→
↪→
↪→
↪→

## Assistant
Certainly! I'm good at tuning parameters for control systems in PyDrake. I will follow your instructions

carefully and think carefully.↪→

## User
Here is the summary of the control system to explain the expected way of how do the controllers work, and

how the ports are connected:↪→
{implementation_summary} (from Interface Alignment)

Here is a yaml file describing what the inputs to the skill are:
{skill_input_summary}

Here we print the port name, type, and sample value for all the input ports:
{input_port_sample}

Here are the detailed implementation of the task_model, tracking_model, task_controller,
tracking_controller, task_callback (the callback functions for the task input port), and
tracking_callback (callback functions for the tracking input ports).

↪→
↪→

=======
<task_model>:
```python

x0 = np.zeros((4,1)) # Initializing the state for the cart-pole system
u0 = np.zeros((1,1)) # Initial control input (force)
m_cart = 0.1 # mass of the cart
m_pole = 0.01 # mass of the pole
l_pole = 0.25 # length of the pole
g = 9.81 # gravitational acceleration
# A and B matrices are placeholders and must be defined based on the specific dynamics of the cart-pole

system↪→
A = np.array([[0, 1, 0, 0],

[0, 0, m_pole * g / m_cart, 0],
[0, 0, 0, 1],
[0, 0, (m_cart + m_pole) * g / (l_pole * m_cart), 0]])

B = np.array([[0], [1/m_cart], [0], [-1/(l_pole*m_cart)]])
C = np.eye(4)
D = np.zeros((4, 1))
task_model = setup_linear_model(x0, u0, A, B, C, D)

```

=======
<tracking_model>:
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```python

tracking_model = setup_arm_with_objects_model(arm_type, object_info)

```

=======
<task_controller>:
```python

Q = np.diag([1, 1, 10, 10]) # Emphasizing the importance of the pole's position and velocity
R = np.array([[0.1]]) # Control effort cost
task_controller = LQRController(task_model, Q, R, x0, u0)

```

=======
<tracking_controller>:
```python

force_control_axis_mask = np.array([False, False, False, False, True, False]) # Force control along the
y-axis↪→

tracking_controller = PoseForceController(tracking_model, force_control_axis_mask)

```

=======
<task_callback>:
```python

def task_state(self, context, output: BasicVector):
# Extracting necessary inputs
measured_body_poses = self.GetInputPort("measured_body_poses").Eval(context)
measured_body_velocities = self.GetInputPort("measured_body_velocities").Eval(context)
measured_joint_states = self.GetInputPort("measured_joint_states").Eval(context)
# Initialize state vector with zeros
state = np.zeros(4)
# Position and Velocity of Cart along the y-axis from body poses and velocities
cart_pose = measured_body_poses['Cart'].translation()
cart_velocity = measured_body_velocities['Cart'].translational()
state[0] = cart_pose[1] # y position of Cart
state[1] = cart_velocity[1] # y velocity of Cart
# Pole's angle (around the x-axis) and angular velocity from joint states
pole_angle = measured_joint_states['PolePin']['positions']
pole_angular_velocity = measured_joint_states['PolePin']['velocities']
state[2] = pole_angle[0] # Assuming 'positions' is a numpy array with one element
state[3] = pole_angular_velocity[0] # Assuming 'velocities' is a numpy array with one element
output.SetFromVector(state)

```

=======
<tracking_callback>:
```python

def tracking_ee_pose_target(self, context, output: BasicVector):
# Desired end-effector pose is constant as per design summary
desired_ee_pose = [1.57078469e+00, 0.0, 1.57079455e+00, 5.96598901e-01, 1.34625984e-03,

4.33589236e-01]↪→
output.SetFromVector(np.array(desired_ee_pose))

def tracking_ee_force_target(self, context, output: BasicVector):
# Obtaining the control action from task controller, directing it to apply force along y-axis
task_control = self.GetInputPort("task_control").Eval(context)
# Only force along the y-axis is controlled, the rest is masked out with zeros.
ee_force_target = np.array([0.0, 0.0, 0.0, 0.0, task_control[0], 0.0])
output.SetFromVector(ee_force_target)

def tracking_arm_position(self, context, output: BasicVector):
# Directly passing the robot arm's measured position
measured_arm_position = self.GetInputPort("measured_arm_position").Eval(context)
output.SetFromVector(measured_arm_position)

def tracking_arm_velocity(self, context, output: BasicVector):
# Directly passing the robot arm's measured velocity
measured_arm_velocity = self.GetInputPort("measured_arm_velocity").Eval(context)
output.SetFromVector(measured_arm_velocity)

```

Here is time series data of the task space state and task space control, which can be used as a metric to
determine if the system is running as expected.↪→

{time series of task state and task control}
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Please first think step by step about the expected time series and determine if the current series is
desired.↪→

Then please analyze one by one if any of the following happen.

* Mismatch of order. The order of the state is inconsistent in model definition, controller definition, or
callback function. Double-check if the order is consistent. For example, an error can be modeling the
task space with [pos_a, vel_a, pos_b, vel_b], but composed the task state by [pos_b, vel_b, pos_a,
vel_a] in task callbacks. In this case, the GPT needs to redefine the state, the model, or the
callback function.

↪→
↪→
↪→
↪→
* Error in definition. Double-check if the assignment is correct for the model, the state, and the

callback functions. Make sure the signs are correct, the numbers are desired, there is no missing
assignments or careless mistakes. Especially pay attention to the dynamic model. Think step by step
about the meaning of each element in the dynamic function.

↪→
↪→
↪→
* Messed up rotation and translation order. In pydrake, for pose, velocity, and force vectors, rotation

always comes first, such as [roll, yaw, pitch, x, y, z] or [x-rotation, y-rotation, z-rotation,
x-translation, y-translation, z-translation]

↪→
↪→
* Modeling is inaccurate, that is when the model involves estimated parameters and it turns out the

estimation is inaccurate.↪→
* The controller parameter is not optimal to finish the task. For example, the system diverges with the

current controller gain.↪→

If the GPT thinks any one of these happens, then identify the parameters and variable assignments that
require tuning to correct errors and improve the performance. The identified code blocks that contain
these parameters and variables will be updated in later conversations.

↪→
↪→

## Assistant
Analyzing the provided system setup, time series data for the task state and control, and the goals and

structure of the control system, let's break down the evaluation and identification process step by
step.

↪→
↪→

### Analysis of Desired Time Series
The time series of **task_state** shows the cart-pole system's state vector components over time: cart

position and velocity along the y-axis, and pole angle and angular velocity. The **task_control**
shows the computed control actions (force) to be applied along the y-axis of the cart to stabilize the
pole around the upright position.

↪→
↪→
↪→
- The pole angle (`theta`) initially decreases towards 0, indicating movement towards the upright

position, which is desired. However, the absolute value of `theta` should ideally approach zero more
closely over time, stabilizing around the upright position.

↪→
↪→
- The **task_control** force values start positive, then decrease, and become negative, suggesting efforts

to stabilize the pole by moving the cart back and forth. The force values appear to reduce in
magnitude over time, which might indicate a diminishing need for correction as the system stabilizes,
a desirable trend.

↪→
↪→
↪→

### Expected and Actual Time Series Comparison
The time series appears to follow expected trends: corrections decrease as the system approaches a stable

state. However, for precise stability and optimal control, further refined tuning of controller
parameters and system modeling accuracy might be necessary.

↪→
↪→

### Identification of Potential Issues
1. **Mismatch of Order**: The definitions provided seem consistent in terms of order, especially in the

`task_state` callback, where `[x, x_dot, theta, theta_dot]` order matches with how the system model
and controller are defined.

↪→
↪→

2. **Error in Definition**: Initial checks don't reveal obvious errors in sign or incorrect assignments,
but deeper evaluation is needed when examining specific code blocks.↪→

3. **Messed Up Rotation and Translation Order**: Given the problem scope, it's primarily about linear
motion and rotation around a single axis. The task controller deals with linear motion and doesn't
directly manipulate rotations, while the tracking controller's force application is aligned correctly
along the y-axis.

↪→
↪→
↪→

4. **Modeling Inaccuracy**: Based on the provided dynamics and control model, the fundamental modeling
approach seems aligned with the physical behavior of a cart-pole system. However, specific parameters
(masses, lengths) are accurate as provided and need no immediate correction.

↪→
↪→

5. **Controller Parameter Not Optimal**: Parameters within `Q` and `R` in the <task_controller> and force
control axis mask in <tracking_controller> suggest room for optimization. For improved performance,
especially in task prioritization (pole stability vs. cart position) and control effort, adjustments
to these values may offer better results.

↪→
↪→
↪→

### Preliminary Recommendations for Parameters and Variable Assignments Tuning
To potentially correct errors and improve system performance, adjustments to `Q` and `R` matrix values in

**<task_controller>** should be considered to better balance between penalizing the pole's deviation
from the upright position and the energy (force) expended for control. The initial emphasis is on the
pole's position (`theta`) and velocity (`theta_dot`), hinting at the right direction, but fine-tuning
will help achieve a more precise and energy-efficient stabilization.

↪→
↪→
↪→
↪→
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Next steps in tuning will be directed towards revising `<task_controller>` parameters with a focus on
likely adjusting `Q` for a higher emphasis on reducing the pole's angle deviation and possibly
refining `R` to manage control effort more effectively.

↪→
↪→

## User
Now please decide if the time series is desired.
If it is, please answer with one word "yes".
If not, you must rewrite the code blocks that contain parameters and variables that require tuning to

correct errors or to improve performance. Do not fear to make mistakes. We will evaluate the code
block, produce a new time series, and iteratively improve the parameters.

↪→
↪→

The response must start with <step_name> followed by a code block enclosed by ```python```. <step_name>
must be included before each code block so the code block can be recognized. step_name must be
enclosed in angle brackets <>. <step_name> must be one of <task_model>, <tracking_model>,
<task_controller>, <tracking_controller>, <task_callback>, <tracking_callback>. For <task_callback>,
<tracking_callback>, you can only rewrite chosen functions of the codeblock. But for other steps, make
sure to rewrite the whole code block because we will directly replace the original block with the
rewritten one. Do not miss any variable in the code block. During "rewriting", you are only supposed
to modify the existing content of the code block, such as values assigned to parameters and variables.
Do not revise functions and variables not presented in the existing code block.

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→

An example output is:

<tracking_callback>
```python
def tracking_func2(self, context, output):

# updated function body
```

<task_controller>
```python
# updated whole code block
```

## Assistant
The time series is not entirely desired. While it shows that the pole's angle is moving towards

stabilization around the upright position, the control effort depicted by task_control is exhibiting a
pattern of diminishing force application even when the pole has not reached a stabilized state (angle
reaches and crosses 0 but starts to deviate again). The task_control should ideally drive the system
more precisely towards stabilization without such a crossover. The adjustments needed seem to be in
the tuning of the LQR controller's Q and R matrices, which directly affect the control performance by
balancing between state deviations and the cost of control effort.

↪→
↪→
↪→
↪→
↪→
↪→

<task_controller>
```python
Q = np.diag([1, 1, 100, 10]) # Increased emphasis on the pole's angle stabilization
R = np.array([[0.01]]) # Reduced cost for control effort to allow more aggressive control actions
task_controller = LQRController(task_model, Q, R, x0, u0)
```

## User
Here is the time series data of the task space state and task space control for the current code:
{}

Now please decide if the time series is desired.
If it is, please answer with one word "yes".
If not, you must rewrite the code blocks that contain parameters and variables that require tuning to

correct errors or to improve performance. Do not fear to make mistakes. We will evaluate the code
block, produce a new time series, and iteratively improve the parameters.

↪→
↪→

The response must start with <step_name> followed by a code block enclosed by ```python```. <step_name>
must be included before each code block so the code block can be recognized. step_name must be
enclosed in angle brackets <>. <step_name> must be one of <task_model>, <tracking_model>,
<task_controller>, <tracking_controller>, <task_callback>, <tracking_callback>. For <task_callback>,
<tracking_callback>, you can only rewrite chosen functions of the codeblock. But for other steps, make
sure to rewrite the whole code block because we will directly replace the original block with the
rewritten one. Do not miss any variable in the code block. During "rewriting", you are only supposed
to modify the existing content of the code block, such as values assigned to parameters and variables.
Do not revise functions and variables not presented in the existing code block.

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→

An example output is:

<tracking_callback>
```python
def tracking_func2(self, context, output):

# updated function body
```

<task_controller>
```python
# updated whole code block
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```

## Assistant
yes

C.4 Model template summary

setup_linear_model:
description: |

This function returns an affine dynamic model.
This model is especially useful when the system is or can be approximated by affine dynamics.
The dynamic equation is: x_dot = A * x + B * u; y = C * x + D * u.

Example usage:
"""
x0 = np.zeros((4,1))
u0 = np.zeros((1,1))
m = 0.01
l = 0.1
g = 0.81
A = np.array([[0,1,0,0], [0,0,m*g,0],[0,0,0,1],[0,0,0,l]])
B = np.array([[0],[1/m],[0],[-1/m]])
C = np.eye(4)
D = np.zeros((4, 1))
model = setup_linear_model(x0, u0, A, B, C, D)
"""

args:
- name: x0

type: numpy.ndarray
size: (n_x, 1)
description: Initial state

- name: u0
type: numpy.ndarray
size: (n_u, 1)
description: Initial input

- name: A
type: numpy.ndarray
size: (n_x, n_x)
description: State matrix

- name: B
type: numpy.ndarray
size: (n_x, n_u)
description: Input matrix

- name: C
type: numpy.ndarray
size: (n_y, n_x)
description: Output matrix

- name: D
type: numpy.ndarray
size: (n_y, n_u)
description: Feedforward matrix

setup_arm_model:
description: |

This function returns a model of the robot arm.
This model is especially useful when the controller only needs to consider the robot arm.
Because this function will be called in skill's init function, arm type is directly available
as arm_type.
Usage:
"""
model = setup_arm_model(arm_type)
"""

args:
- name: arm_type

type: str
description: The robot arm type. It should be consistent as the skill's.

setup_arm_with_objects_model:
description: |

This function returns a model of the robot arm and static objects in the scene.
This model is especially useful when the controller needs to consider the interaction between
the robot and objects, such as grasping and collision avoidance.
It can be used for controlling in the cartesian space or in the joint space.
Because this function will be called in skill's init function, arm type and object_info
are directly available as arm_type and object_info.
Usage:
"""
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model = setup_arm_with_objects_model(arm_type, object_info)
"""

args:
- name: arm_type

type: str
description: The robot arm type. It should be consistent as the skill's.

- name: object_info
type: dict
description: The dictionary of all objects in the scene. It should be consistent as the skill's.

setup_placeholder_model:
description: |

This function returns None.
This model is especially useful when the controller does not need any dynamic model.
Example usage:
"""
model = setup_placeholder_model()
"""

C.5 Controller template summary

LQRController:
description: |

This class implements a Linear Quadratic Regulator (LQR) controller for a given affine system.
The controller computes control inputs based on the state deviations from a given equilibrium.

args:
- name: model

type: Diagram
description: A Diagram containing the AffineSystem for which the LQR controller is designed.

- name: Q
type: numpy.ndarray
description: State cost matrix.

- name: R
type: numpy.ndarray
description: Control cost matrix.

- name: x0
type: numpy.ndarray
description: Equilibrium state around which the controller is designed.

- name: u0
type: numpy.ndarray
description: Equilibrium control input.

input_ports:
- name: state

type: BasicVector
size: "len(x0)"
description: Represents the current state of the system.

output_ports:
- name: control

type: BasicVector
size: "len(u0)"
description: Represents the computed control input based on the LQR control law.

IdentityController:
description: |

This class implements an identity controller that directly outputs the arm torque it receives.
It is the best choice when the task controller is already enough to accomplish the task and we
only need a placeholder for the tracking controller.

args:
- name: model

type: Diagram
description: A Diagram containing the MultiBodyPlant model of the robotic system.

input_ports:
- name: applied_arm_torque

type: BasicVector
size: "plant.num_actuators()"
description: applied_arm_torque computed by the task controller.

output_ports:
- name: applied_arm_torque

type: BasicVector
size: "plant.num_actuators()"
description: directly output the input applied_arm_torque.

PoseForceController:
description: |

This class implements a controller that combines pose and force control for a robotic arm.
The controller computes torques based on the desired end-effector pose and force.
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It is best suitable for the situation when we have a desired force on some dimensions and a desired
position or rotation on other dimensions. Note that the controller can not track force and pose at the
same time for a dimension.

↪→
↪→

args:
- name: model

type: Diagram
description: A Diagram containing the MultiBodyPlant model of the robotic system.

- name: force_control_axis_mask
type: numpy.ndarray
description: Boolean array of length 6 to specify which axes are controlled by force. The order is

[x-rotation, y-rotation, z-rotation, x-translation, y-translation, z-translation]. For each dimension,
True represents force control, False represents pose control.

↪→
↪→

input_ports:
- name: ee_pose_target

type: BasicVector
size: 6
description: Desired end-effector pose (roll, pitch, yaw, x, y, z).

- name: ee_force_target
type: BasicVector
size: 6
description: Desired end-effector force. (x-rotation, y-rotation, z-rotation, x-translation,

y-translation, z-translation).↪→
- name: arm_position

type: BasicVector
size: "plant.num_positions(arm)"
description: Current joint positions of the arm.

- name: arm_velocity
type: BasicVector
size: "plant.num_velocities(arm)"
description: Current joint velocities of the arm.

output_ports:
- name: applied_arm_torque

type: BasicVector
size: "plant.num_actuators()"
description: Computed joint torques for the robot arm.

CartesianStiffnessController:
description: A cartesian stiffness controller using impedance control to determine control torques.

Makes the robot behave as if a spring-damper system is attached to the end-effector. The stiffness can
be adjusted dynamically by providing input to the controller_parameters port. The advantage of this
controller is it can provide compliant behavior with adjustable stiffness.

↪→
↪→
↪→

args:
- name: model

type: Diagram
description: A Diagram containing the robot model (MultiBodyPlant) for computing dynamics

input_ports:
- name: ee_target

type: BasicVector
size: 6
description: Desired end effector target (pose or twist). [roll, pitch, yaw, x, y, z]

- name: ee_target_type
type: AbstractValue
description: Type of the end effector target. This type is enum. The must be EndEffectorTarget.kPose

or EndEffectorTarget.kTwist. Do not use `str`, use enum directly.↪→
- name: arm_position

type: BasicVector
size: "(number of positions of the plant's arm)"
description: Current joint position of the robot arm.

- name: arm_velocity
type: BasicVector
size: "(number of velocities of the plant's arm)"
description: Current joint velocity of the robot arm.

- name: controller_parameters
type: AbstractValue
example_value:

cartesian_stiffness: "[0.1]*3 + [200]*3"
description: The controller can be parameterized through an abstract input port

"controller_parameters" to modify its behavior during runtime, allowing changes to cartesian_stiffness
and "cartesian_damping" matrices. [roll, pitch, yaw, x, y, z]

↪→
↪→

output_ports:
- name: applied_arm_torque

type: BasicVector
size: "(number of actuators in the plant)"
description: Control torques applied to the joints of the robot arm.

SafeController:
description: A controller that projects nominal control torque to a safe control torque using a control

barrier function. Currently, the safe constraint is collision avoidance. The advantage of this
controller is to safeguard a nominal control input port to realize reactive collision avoidance.

↪→
↪→

args:
- name: model
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type: Diagram
description: Diagram containing the multibody plant and scene graph, as well as the information of

obstacles for collision avoidance.↪→
- name: meshcat

type: Meshcat
description: This arg is optional. For visualization purposes.

input_ports:
- name: arm_target

type: BasicVector
size: "num_q"
description: Desired joint target for the arm.

- name: arm_target_type
type: AbstractValue
description: Type of the target. This type is enum. The value must be JointTarget.kPosition,

JointTarget.kVelocity, or JointTarget.kTorque. Do not use `str`, use enum directly.↪→
- name: arm_position

type: BasicVector
size: "num_q"
description: Current joint position of the arm.

- name: arm_velocity
type: BasicVector
size: "num_q"
description: Current joint velocity of the arm.

output_ports:
- name: applied_arm_torque

type: BasicVector
size: "num_q"
description: Computed joint torque for the arm.

CartesianTrajectoryController:
description: Constructs a trajectory in cartesian space and publishes waypoints by interpolating the

trajectory. Depending on the polynomial order, it can produce first-order holds or cubic splines for
the trajectory.

↪→
↪→

args:
- name: model

type: Diagram
description: model is not useful in this controller, but should be passed in for consistency

- name: polynomial_order
default: 1
description: Order of the polynomial for trajectory optimization. Supported values are 1 (for First

Order Hold) and 3 (for Cubic Spline).↪→
- name: meshcat

type: Meshcat
description: A visualization tool. (optional)

input_ports:
- name: controller_parameters

type: AbstractValue
example_value:

new_trajectory: true
way_points:

times: "[list of times]"
points: "[list of pose in RPY_XYZ format]"

description: Controller parameters that can indicate the need for a new trajectory and provide
waypoints.↪→
- name: measured_ee_pose

type: BasicVector
size: 6
description: Measured pose of the end effector in RPY_XYZ format.

- name: measured_ee_twist
type: BasicVector
size: 6
description: Measured twist of the end effector. RPY_XYZ

output_ports:
- name: ee_pose_nom

type: BasicVector
size: 6
description: Nominal end-effector pose based on the last solved trajectory spline evaluated at the

current time. RPY_XYZ↪→

KinematicTrajectoryModelPredictiveController:
description: An MPC controller using kinematic trajectory optimization to calculate a collision-free

trajectory in joint space. The objective of this controller is to reach a goal in cartesian space with
the end effector. Please note that the output is in joint space.

↪→
↪→

args:
- name: model

type: Diagram
description: Diagram containing the multibody plant and scene graph, as well as the information of

obstacles for collision avoidance↪→
- name: resolve_period
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type: float
default: 3.0
description: Trajectory optimization resolution period.

- name: num_steps
type: int
default: 20
description: Number of optimization steps.

- name: meshcat
type: Meshcat Optional
description: For visualization

input_ports:
- name: controller_parameters

type: AbstractValue
example_value:

goal_pose: RigidTransform
description: Controller parameters including desired goal pose for the end effector.

- name: measured_arm_position
type: BasicVector
size: "(number of positions of the robot arm)"
description: Current joint position of the robot arm.

- name: measured_arm_velocity
type: BasicVector
size: "(number of velocities of the robot arm)"
description: Current joint velocity of the robot arm.

output_ports:
- name: q_nom

type: BasicVector
size: "(number of actuators in the plant)"
description: Nominal joint positions of the arm.

C.6 Skill input summary

- port_name: controller_parameters
description: Controller parameters that can be adjusted dynamically during running.
type: AbstractValue
data_structure: dict

- port_name: measured_arm_position
description: Observation of the robot arm's joint position.
type: BasicVector
dimensions: num_q

- port_name: measured_arm_velocity
description: Observation of the robot arm's joint velocity.
type: BasicVector
dimensions: num_q

- port_name: measured_ee_pose
description: Observation of the end effector's pose. The first three elements correspond to rotation.

The last three elements correspond to translation.↪→
type: BasicVector
dimensions: 6

- port_name: measured_ee_twist
description: Observation of the end effector's twist. The first three elements correspond to rotation.

The last three elements correspond to translation.↪→
type: BasicVector
dimensions: 6

- port_name: measured_joint_states
description: Observation of the joint states (including joint states of articulated objects).
type: AbstractValue
data_structure: dict

- port_name: measured_body_poses
description: Observation of the poses of the rigid bodies in the scene.
type: AbstractValue
data_structure: dict

- port_name: measured_body_velocities
description: Observation of the velocities of the rigid bodies in the scene.
type: AbstractValue
data_structure: dict
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C.7 Input port sample

============================================
TrackingControllerConverter input port contents:
controller_parameters : <class 'dict'> , {'gripper_command': 'release'}
measured_arm_position : <class 'numpy.ndarray'> , [ 0. 0.26179939 3.14159265 -2.26918531 0.

0.9599↪→
1.57079633]

measured_arm_velocity : <class 'numpy.ndarray'> , [0. 0. 0. 0. 0. 0. 0.]
measured_ee_pose : <class 'numpy.ndarray'> , [ 1.57108469e+00 -3.92246873e-06 1.57079455e+00

5.96598901e-01↪→
1.34625984e-03 4.33589236e-01]

measured_ee_twist : <class 'numpy.ndarray'> , [0. 0. 0. 0. 0. 0.]
measured_joint_states : <class 'dict'> , {'Actuator1': {'positions': array([0.]), 'velocities':

array([0.])}, 'Actuator2': {'positions': array([0.26179939]), 'velocities': array([0.])}, 'Actuator3':
{'positions': array([3.14159265]), 'velocities': array([0.])}, 'Actuator4': {'positions':
array([-2.26918531]), 'velocities': array([0.])}, 'Actuator5': {'positions': array([0.]),
'velocities': array([0.])}, 'Actuator6': {'positions': array([0.9599]), 'velocities': array([0.])},
'Actuator7': {'positions': array([1.57079633]), 'velocities': array([0.])}, 'EndEffector':
{'positions': array([], dtype=float64), 'velocities': array([], dtype=float64)},
'world_welds_to_base_link': {'positions': array([], dtype=float64), 'velocities': array([],
dtype=float64)}, 'PolePin': {'positions': array([0.1]), 'velocities': array([0.])},
'end_effector_link_welds_to_Cart': {'positions': array([], dtype=float64), 'velocities': array([],
dtype=float64)}, '$world_obstacle_box_2': {'positions': array([ 0.99875026, 0. , 0. ,
-0.04997917, 0.4 ,

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→

0.3 , 0.101 ]), 'velocities': array([0., 0., 0., 0., 0., 0.])}, '$world_goal_box':
{'positions': array([1. , 0. , 0. , 0. , 0.6 , 0. , 0.026]), 'velocities': array([0., 0.,
0., 0., 0., 0.])}}

↪→
↪→
measured_body_poses : <class 'dict'> , {'Cart': RigidTransform(

R=RotationMatrix([
[1.771814082172029e-06, 0.9999999584203277, -0.0002883681730920518],
[0.9999999999907371, -1.7706828933479899e-06, 3.922979501902304e-06],
[3.9224687301950226e-06, -0.00028836818003996167, -0.9999999584142024],

]),
p=[0.48659890557829427, 0.001346454619425365, 0.4336209565978073],

)}
measured_body_velocities : <class 'dict'> , {'Cart': SpatialVelocity(

w=[0.0, 0.0, 0.0],
v=[0.0, 0.0, 0.0],

)}

task_control : <class 'numpy.ndarray'> , [0.]
============================================
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